发布时间:2017-06-29 阅读:0次
导语: 洁净室(clean room),亦称为无尘室或清净室。它是污染控制的基础。没有洁净室,污染敏感零件不可能批量生产。在 fed-std-2里面,洁净室被定义为具备空气过滤、分配、优化、构造材料和装置的房间,其中特定的规则的操作程序以控制空气悬浮微粒浓度,从而达到适当的微粒洁净度级别一、定义
洁净室(clean room),亦称为无尘室或清净室。它是污染控制的基础。没有洁净室,污染敏感零件不可能批量生产。在 fed-std-2里面,洁净室被定义为具备空气过滤、分配、优化、构造材料和装置的房间,其中特定的规则的操作程序以控制空气悬浮微粒浓度,从而达到适当的微粒洁净度级别。
洁净室是指将一定空间范围内之空气中的微粒子、有害空气、细菌等之污染物排除,并将室内之温度、洁净度、室内压力、气流速度与气流分布、噪音振动及照明、静电控制在某一需求范围内,而所给予特别设计之房间。亦即是不论外在之空气条件如何变化,其室内均能俱有维持原先所设定要求之洁净度、温湿度及压力等性能之特性。
洁净室最主要之作用在于控制产品(如硅芯片等)所接触之大气的洁净度日及温湿度,使产品能在一个良好之环境空间中生产、制造,此空间我们称之为洁净室。按照国际惯例,无尘净化级别主要是根据每立方米空气中粒子直径大于划分标准的粒子数量来规定。也就是说所谓无尘并非100%没有一点灰尘,而是控制在一个非常微量的单位上。当然这个标准中符合灰尘标准的颗粒相对于我们常见的灰尘已经是小的微乎其微,但是对于光学构造而言,哪怕是一点点的灰尘都会产生非常大的负面影响,所以在光学构造产品的生产上,无尘是必然的要求。
每立方米将小于0.5微米粒径的微尘数量控制在3500个以下,就达到了国际无尘标准的a级。目前应用在芯片级生产加工的无尘标准对于灰尘的要求高于a级,这样的高标主要被应用在一些等级较高芯片生产上。微尘数量被严格控制在每立方米1000个以内,这也就是业内俗称的1k级别。
洁净室用途主要有以下三个:
空气洁净室:已经建造完成并可以投入使用的洁净室(设施)。它具备所有有关的服务和功能。但是,在设施内没有操作人员操作的设备。
静态洁净室:各种功能完备、设定安装妥当,可以按照设定使用或正在使用的洁净室(设施),但是设施内没有操作人员。
动态洁净室:处于正常使用的洁净室,服务功能完善,有设备和人员;如果需要,可从事正常的工作。
二、控管项目
1、能除去空气中飘游之微尘粒子。
2、能防止微尘粒子之产生。
3、温度和湿度之控制。
4、压力之调节。
5、 有害气体之排除。
6、结构物与隔间之气密性。
7、静电之防制。
8、电磁干扰预防。
9、安全因素之考虑。
10、节能之考量。
三、分类
乱流式(turbulent flow)层流式(laminar)复合式(mixed type)气流的重要性风速的控制影响因素空气由空调箱经风管与洁净室内之空气过滤器(hepa)进入洁净室,并由洁净室两侧隔间墙板或高架地板回风。气流非直线型运动而呈不规则之乱流或涡流状态。此型式适用于洁净室等级1,000-100,000级。
定义:气流以不均匀速度不平行流动、伴有回流或涡流的洁净室。
原理:乱流洁净室靠送风气流不断稀释室内空气,将污染空气逐渐稀释,来实现洁净的(乱流洁净室一般设计在千级以上至30万级净化级别)。
特性:乱流洁净室是靠多次换气来实现洁净与洁净级别。换气次数决定定义中的净化级别(换气次数越多,净化级别越高)(1)自净时间:是指洁净室按设计换气次数开始送风到洁净室,室内含尘浓度达到所设计的净化级别的时间。 1,000级希望不超过20min(分钟) (可取15min计算) 10,000级希望不超过30min(分钟) (可取25min计算) 100,000级希望不超过40min(分钟) (可取30min计算)(2)换气次数(按上述自净时间要求设计)1,000级 43.5—55.3次/小时 (规范:50次/小时) 10,000级 23.8—28.6次/小时 (规范:25次/小时) 100,000级 14.4—19.2次/小时 (规范:15次/小时)优点:构造简单、系统建造成本,洁净室之扩充比较容易,在某些特殊用途场所,可并用无尘工作台,提高洁净室等级。
缺点:乱流造成的微尘粒子于室内空间飘浮不易排出,易污染制程产品。另外若系统停止运转再激活,欲达需求之洁净度,往往须耗时相当长一段时间。
层流式空气气流运动成一均匀之直线形,空气由覆盖率100%之过滤器进入室内,并由高架地板或两侧隔墙板回风,此型式适用于洁净室等级需定较高之环境使用,一般其洁净室等级为class 1~100。其型式可分为二种:
(1)水平层流式:水平式空气自过滤器单方向吹出,由对边墙壁之回风系统回风,尘埃随风向排出室外,一般在下流侧污染较严重。
优点:构造简单,运转后短时间内即可变成稳定。
缺点:建造费用比乱流式高,室内空间不易扩充。
(2)垂直层流式:房间天花板完全以ulpa过滤器覆盖,空气由上往下吹,可得较高之洁净度,在制程中或工作人员所产生的尘埃可快速排出室外而不会影响其它工作区域。
优点:管理容易,运转开始短时间内即可达稳定状态,不易为作业状态或作业人员所影响。
缺点:构造费用较高,弹性运用空间困难,天花板之吊架相当占空间,维修更换过滤器较麻烦。
复合式为将乱流式及层流式予以复合或并用,可提供局部超洁净之空气。
(1)洁净隧道(clean tunnel):以hepa或ulpa过滤器将制程区域或工作区域100%覆盖使洁净度等级提高至10级以上,可节省安装运转费用。
此型式需将作业人员之工作区与产品和机器维修予以隔离,以避免机器维修时影响了工作及品质,ulsi制程大都采用此种型式。
洁净隧道另有二项优点:a.弹性扩充容易; b.维修设备时可在维修区轻易执行。
(2)洁净管道(clean tube):将产品流程经过的自动生产线包围并净化处理,将洁净度等级提至100级以上。因产品和作业员及发尘环境相互隔离,少量之送风即可得到良好之洁净度,可节省能源,不需人工的自动化生产线为最适宜使用。药品、食品业界及半导体业界均适用。
(3)并装局部洁净室(clean spot):将洁净室等级10,000~100,000之乱流洁净室内之产品制程区的洁净度等级提高为10~1000级以上,以为生产之用;洁净工作台、洁净工作棚、洁净风柜即属此类。
洁净工作台:等级class 1~100级。
洁净工作棚:为在乱流式之洁净室空间内以防静电之透明塑料布围成一小空间,采用独立之hepa或ulpa及空调送风机组而成为一较高级之洁净空间,其等级为10~1000级,高度在2.5米左右,覆盖面积约10m2以下,四支支柱并加装活动轮,可为弹性运用。
四、气流的流动
洁净室的洁净度往往受到气流的影响,换言之,即人、机器隔间、建筑结构等所产生的尘埃之移动、扩散受到气流的支配。
洁净室系利用hepa、ulpa过滤空气,其尘埃的收集率达99.97~99.99995%之多,因此经过此过滤器过滤的空气可说十分干净。然而洁净室内除了人以外,尚有机器等之发尘源,这些发生的尘埃一旦扩散,即无法保持洁净空间,因此必须利用气流将发生的尘埃迅速排出室外。
洁净室内的气流是左右洁净室性能的重要因素,一般洁净室的气流速度是选0.25~0.5m/s之间,此气流速度属微风区域,易受人、机器等的动作而干扰趋于混乱、虽提高风速可抑制此一扰乱之影响而保持洁净度、但因风速的提高,将影响运转成本的增加,所以应在满足要求的洁净度水准之时,能以最适当的风速供应,以达到适当的风速供应以达到经济性效果。
另一方面欲达到洁净室洁净度之稳定效果,均一气流之保持亦为一重要因素,均一气流若无法保持,表示风速有异,特别是在壁面,气流会延着壁面发生涡流作用,此时要实现高洁净度事实上很困难。
垂直层流式方向要保持均一气流必须:(a)吹出面的风速不可有速度上的差异;(b)地板回风板吸入面之风速不可有速度上的差异。速度过低或过高(0.2m/s,0.7m/s)均有涡流之现象发生,而0.5m/s之速度,气流则较均一,目前一般洁净室,其风速均取在0.25~0.5m/s之间。
影响洁净室的气流因素很多,如制程设备、人员、洁净室组装材、照明器具等,同时对于生产设备上方气流的分流点,亦应列入考虑因素。
一般操作台或生产设备等表面的气流分流点,应设于洁净室空间与隔墙板间距2/3之处,如此可使作业人员工作时,气流可从制程区内部流向作业区,而将微尘带走;若分流点配置在制程区前方,将成为不当的气流分流,此时大部份的气流将流至制程区之后,作业员操作所引起的尘埃将被带到设备后面,工作台因而将受到污染,良率也势必降低。
洁净室内的工作桌等障碍物,在相接处均会有涡流现象发生,相对地在其附近之洁净度将会较差,在工作桌面钻上回风孔,将使涡流现象减少最低;组装材料之选择是否恰当、设备布局是否完善,亦为气流是否成为涡流现象之重要因素。
点击拨打咨询电话